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ABSTRACT 

A beam balance is analyzed as a model that describes Weber’s law. The 
mathematical derivations of the torques on a beam balance produce a description 
that is strictly compatible with that law. The natural relationship of the beam 
balance model to Weber’s law provides for an intuitive understanding of the 
relationship of Weber’s law to sensory and receptor systems. Additionally, this model 
may offer a simple way to compute perturbations that result from unequal effects on 
coupled steady-state systems. A practical outgrowth from this work is that a rela- 
tively simple mathematical description models sensory phenomena and may aid in 
the understanding of sensory and receptor systems. 

1. INTRODUCTION 

Weber’s law and the modified Weber-Fechner law have been consid- 
ered mathematical descriptions of sensory responses for more than 100 
years. A large number of sensory systems and their respective stimuli, 
including sound, light, smell, and taste stimuli, can be modeled in the 
moderate range of stimuli by these laws. However, deviations from 
predicted values have been observed for small and large stimulus 
intensities [3]. The failure of Weber’s law and the Weber-Fechner law 
to model the extremes of responses to either high or low stimuli has 
generated attempts to find physically more meaningful models [l-3, 51. 

Originally the German anatomist and physiologist E. H. Weber 
studied the response of humans to physical stimuli. He found that a 
person is unable to discriminate between 20.5 and 20.0-g weights in 
each hand but can usually discriminate between 21 and 20 g. For a 
weight of 20 g, the required increase of the stimulus for the just 
noticeable difference is 1 g. However, with an initial weight of 40 g, the 
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result is quite different. A person cannot reliably discriminate between 
41 g and 40 g but requires an increase of stimulus of 2 g for the just 
noticeable difference. Similarly, Weber found that 63 grams can be 
discriminated from 60 grams, 84 grams from 80 grams, and 105 grams 
from 100 grams. The required increase of the stimulus for the just 
noticeable difference in all cases is 5% of the original weight [l]. 

From these observations in 1834 Weber formulated a law that 
establishes that for the just noticeable difference a given intensity of 
stimulation is proportional to the original stimulus. Remarkably similar 
results were discovered for sound, light, smell, and taste stimuli. In 
general it was discovered that if s is the magnitude of a stimulus and 
jnd is the just noticeable difference for discrimination, then the ratio 

jnd 
r=- 

s 

is constant. The noticeable differences in sensation occur only when the 
increases (or changes) in stimuli are a constant percentage of the 
stimulus itself. This is Weber’s law. 

Fechner showed that joint acceptance of Weber’s law plus the 
assumption that all jnd’s have equal subjective size leads to a simple 
logarithmic rule relating the level of sensation to the stimuli 

jnd=Alog(s)+B, 

where A and B are fitted constants [ll. 
An important application of the Weber-Fechner law is the dose- 

response relationship in biological assays. When the dose of a chemical 
(drug or hormone) is administered, the response is not linearly related 
to the dose; rather it is the logarithm of the dose versus the response 
that most nearly describes the dose-response relationship. Weber’s law 
is approximately correct for a wide variety of sensory dimensions, 
although substantial deviations from predicted values are observed for 
either large or small stimuli. 

2. DERIVATION AND RESULTS 

The derivation begins with the torques on a beam balance as dia- 
gramed in Figure 1. The weights w1 and w2 at distances dl and d2 from 
the fulcrum produce equal torques such that the balance is in an initial 
state of horizontal equilibrium. Therefore, 

w,(dl) = w,(d2). 
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FIG. 1. A diagram illustrating two equivalent ways to produce equal displace- 
ments of a beam balance. (Top) The addition of weights S, and S, produces the 
displacement x. To establish horizontal equilibrium, the fulcrum is moved by the 
distance f as pictured. (Bottom) The transfer of the weight Aw from w2 to the 
opposite side is diagramed. This produces an equal displacement x as pictured and 
results in an equivalent movement of the fulcrum, f, to maintain the horizontal 
equilibrium. 

If additional weights S, and S, are added to the opposite sides of the 
balance, a displacement (x) will be produced if the torques are unequal. 
The fulcrum can be moved the distance f as shown in Figure 1 to 
establish a new equilibrium point. The new equilibrium condition can 
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or 

w1+ Sl d2+f 
w,= dl-f’ 

An equivalent displacement can be produced by a transfer of some 
fraction of weight from one side of the balance to the other side. This is 
diagramed in Figure 1 and can be represented as 

(w,+Aw)(dl-f)=(w,-Aw)(d2+f) 

or by rearranging to give 

w,+Aw d2+f =- 
w,-Aw dl-f’ (2) 

where Aw is the weight that is transferred from one side to the opposite 
side to produce a displacement that is equivalent to the previous 
displacement of the balance produced by the addition of weights S, and 
S,. The right-hand sides of Equations (1) and (2) are identical; there- 
fore, 

w,+Aw Wl + Sl 

w,-Aw =- w2 + s, . (3) 

Equation (3) shows that for equal displacements these ratios are equal 
for the two cases. That is, whether a fraction of the weight is transferred 
from one side to the opposite side or unequal torques are produced by 
the relative weighting produced by the simple addition of weights, the 
displacements of the balance from horizontal equilibrium can be made 
equal (see Figure 1). This relationship allows for a discrete and unique 
solution for Aw. Solving equation (3) for Aw gives 

or, upon simplification, 

Aw= w, - &WI 
(w1+&)+(w*+%). 

(4) 
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FIG. 2. A plot of Equation (4) with w, = w2 = 1 for various values of S, and S,. 
The plot represents a hyperbolic plane of Aw. 

If Aw is plotted against the additional weights S, and S,, then the 
resulting plot shows a hyperbolic plane for Aw (see Figure 2). 

The calculated values for Aw from Equation (4) were compared to 
the experimental values of the ratio of the jnd and to the magnitudes of 
the total stimuli from Weber [ll. As shown in Table 1, the calculated 
values of Aw are identical to the experimental values of Weber [ll. 
When w is 1.03, Aw becomes equal in magnitude to the jnd/(Si + S,) 
values. It is interesting that such a simple physical system demonstrates 
Weber’s law, which describes a wide variety of complex sensory systems. 

TABLE 1 

Comparison of Weber’s Experimental Observation to the Values of Aw 
Calculated by Equation (4) 

Weber’s exp. jnda 

S, /5, (8) (8) jnd/(S, + S,) Awb 

20/21 1 0.024 0.024 
40/42 2 0.024 0.024 
60/63 3 0.024 0.024 
80/84 4 0.024 0.024 

100/105 5 0.024 0.024 

a jnd, just noticeable difference. 
b For w, = w2 = 1.03. 
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3. DISCUSSION 

Weber’s law is strictly obeyed by a physical beam balance as shown 
by the data in Table 1. The mathematical representation of the beam 
balance model to Weber’s law provides for a more intuitive understand- 
ing of the relationship of Weber’s law to sensory and receptor systems. 
This model may also offer alternative methods to compute the pertur- 
bations that result from unequal effects on coupled steady-state sys- 
tems. Interestingly, the beam balance model displays a loss of response 
at larger loads and can be used as a physical model of receptor 
desensitization [4]. A practical outgrowth from this work is that a 
relatively simple mathematical description models sensory phenomena 
and may aid in the understanding of sensory and receptor systems. 

Stevens examined a number of sensory systems and concluded that 
great importance must be placed upon the transducer process itself, at 
the periphery [51. In particular, Stevens wondered how it could be that 
the receptor process bends the sensory function by a ratio-preserving 
compression and thereby permits the coupling of the organism to such 
dynamic ranges of stimuli. Current research based upon the beam 
balance model [4] may provide the mathematical framework for further 
insights into this important question. 
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